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Abstract— This paper proposes a novel decision-making
framework for planning “when” and “where” to deploy robots
based on prior data with the goal of persistently monitoring a
spatio-temporal phenomenon in an environment. We specifically
focus on large lake monitoring, where remote sensors, such as
satellites, can provide a snapshot of the target phenomenon
at regular cycles. Between these cycles, Autonomous Surface
Vehicles (ASVs) can be deployed to maintain an up-to-date
model of the phenomenon. However, deploying ASVs has a
significant logistical overhead in terms of time and cost. It
requires a team of people to go on site and spend a day
or half to monitor the deployment. It is vital to not only
be intentional about where to sample in the environment on
a given day, but also determine the worth of deploying the
ASVs that day at all. Therefore, we propose a persistent
monitoring strategy that provides the days and locations of
when and where to sample with the robots, by leveraging
the remote sensing data as well as modeling the dynamics
and changes in the variance via a Gaussian Process. Our
approach minimizes the number of days and locations for
sampling, while preserving the quality of estimates. Through
simulation experiments using realistic spatio-temporal datasets,
we demonstrate the benefits of our approach over traditional
deployment strategies, including significant savings on the effort
and operational cost of deploying the ASVs.

I. INTRODUCTION

We present a novel decision-making approach for planning
“when” and “where” to deploy robots to sample, based on
remote sensing data, to efficiently and accurately reconstruct
a spatio-temporal phenomenon over a long-time horizon.
The remote sensing data of the full environment is provided
at fixed known intervals, while the robots sample smaller
regions of interest during the remote sensing interludes. See
Fig. 1 for the main idea.

Monitoring spatio-temporal phenomena is important for a
number of high-impact applications, including environmental
monitoring and precision agriculture [1]. A common sensing
modality for such applications is hyperspectral imagery from
various satellites [2]. While satellite flyovers occur at regular
known intervals, the periods between data acquisition is
somewhat large, e.g., LandSat’s flyovers occur every two
weeks. In order to persistently monitor a phenomenon of
interest in the environment, it is crucial to utilize other data-
collection technologies. For instance, water quality monitor-
ing has been carried out with water quality measuring sondes
carried by Autonomous Surface Vehicles (ASVs) [3]–[5] and
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Fig. 1. Scenario: Given a region of interest with a spatio-temporal field,
F , for which remote sensing data is available at regular intervals, and a
robot, R (equipped with a sensor that can measure the field), which needs
to coordinate with the remote sensor in order to persistently monitor F over
a long period. On “Which days” and at “which locations” should R be
deployed so that the uncertainty of the estimated spatial field remains low
and the cost of operating R is minimized?

images captured by a downward facing camera mounted on
Unmanned Aerial Vehicles (UAVs) [6].

Most current research pursues strategies using robots to
cover and sample regions of interest for one day’s purpose
[7]. However, many real-world phenomena in environments
need to be monitored over long periods of time. Therefore,
multiple robotic deployments are typically required over a
‘season’ of monitoring. Moreover, there is high logistical cost
and overhead for deployments, such as traveling to the site,
coordinating with team members, ensuring the robot safety,
etc. Thus, it is generally difficult to conduct daily sampling
campaigns.

Our goals are to reduce the on-site sampling burden
and be more intentional on how the robotic deployment is
conducted. We propose a strategy that exploits prior data,
from both the remotely sensed and on-site sampled data, to
decide whether a robot sampling deployment is necessary on
a given day and, if so, where the robot(s) should sample –
all of which to ensure an accurate daily estimate of the target
spatio-temporal phenomena.

In particular, the main contributions include:
• A modeling framework based on a Mixture of Gaus-

sian Process Experts (MoGPE) approach to quantify
the uncertainty over time from the accumulated data,
consisting of data from remote sensors and previous



robotic deployments.
• A novel decision-making framework, based on the

aforementioned modeling framework, for spatio-
temporal sampling over a long-time horizon.

• Analysis of the tradeoff between efficiency and accuracy
– i.e., minimizing or maximizing the number of sam-
pling performed – through experiments on synthetic and
real-world phenomena.

Experimental results demonstrate that our method signif-
icantly reduces the number of sampling days while also
preserving the quality of model reconstruction. This work
represents the foundation of long-term spatio-temporal sam-
pling to support scientists in their endeavor to protect our
environment.

The paper is structured as follows. The next section dis-
cusses related work specifically focusing on spatio-temporal
monitoring. Section III formally states the sampling problem
of focus. Section IV describes the modeling used for keeping
track of changes in the uncertainty over time, which allows
for decisions to be taken on when and where to sample,
as presented in Section V. Experiment setup, results and
concluding remarks are presented in Section VI, VII, and
VIII respectively.

II. RELATED WORK

Several approaches have been proposed for sampling in
a region of interest, where robots have to collect spatial
information in the environment. Such approaches typically
fall in two categories, coverage [8]–[10] with robots that have
to cover every point in the region of interest with the sensor
footprint; and adaptive sampling [11]–[14] where robots
will adapt to measurements taken during the mission. Some
recent surveys on exploration and sampling include [7], [15].
The mainstream methods look at spatial sampling in static
environments, neglecting the temporal components important
in expeditionary science [16]. Here, we highlight the work
that focuses on spatio-temporal monitoring.

Spatio-temporal monitoring can be achieved by having
robots following preplanned missions [17] or offline op-
timized paths [18] and collecting data repeatedly. Some
adaptation of preplanned missions to external factors can
allow persistent monitoring in the ocean [19]. Reactive
strategies like artificial potential field can also be found
in the literature [20]. Graphs can represent the locations
and their connections that the robots need to visit; when
the objective function is submodular, i.e., when a sample
from a location provides less utility because other closer
locations have already been sampled, a greedy algorithm
can have approximation guarantees [21]. Gaussian Processes
(GPs) have been used for modeling the spatio-temporal map,
where for example the robot moves following a simple
behavior [22]. More commonly, GPs are used for finding
paths that maximize the information gain and minimize
the traveled distance [23]–[25]. Monte Carlo Tree Search
(MCTS) is another technique used to balance exploration
and exploitation and is shown to capture time dynamics [26],
[27]. Caley and Hollinger [28] compared in simulation a

number of different methods for sampling in ocean areas
above a certain threshold ranging from boustrophedon [8]to
sequential Bayesian optimization [29]. The latter, an adaptive
sampling method, outperforms the others. Some methods
model explicitly dynamics so that the exploration strategy
can predict environment change and accordingly decide when
to explore a specific area [30]. In a multirobot scenario,
some work have looked at distributing the workload fairly
by geometrically subdividing the region of interest [31].
A distributed multirobot strategy exploits a reduced-order
model from sparse measurements in order to then estimate
areas without measurements and accordingly reconfigure the
sensing locations [32].

There have also been attempts on combining different
sensor streams and proposing sampling strategies, such as
mobile robots and static nodes [33], ASV with UAV [34],
[35] and ASV with satellite [36]. Their goal was to enhance
the efficiency of the sampling mission by compensating the
weakness of one sensor stream and leveraging the strength
of another sensor stream.

Differently from the current literature, our objective is to
use prior data to take informed decisions on days when to
deploy the robots and sample rather than making arbitrary
deployments.

III. PROBLEM STATEMENT

Our aim is to estimate the state of an unknown spatio-
temporal phenomenon F in a 2D environment E ⊂ R2,
during a monitoring period with a long-time horizon T.
Specifically, F =

⋃T
t=1 Ft , where Ft is a snapshot of F at

some time step t.
We utilize two heterogeneous sensors, ZR and ZG. ZR is a

remote sensing tool (e.g., satellite) that observes Ft at fixed
time intervals TR, where 1 < TR ≤ T , to obtain the data DR =
{DiTR},∀i ∈ {0, . . . , T

TR
}. ZG is a point measurement sensor

(e.g., ASV) that can observe FtD if deployed at tD to obtain
the data DG = {DtD}. Initially, tD is unknown, as it represents
the time steps of when to deploy ZG.

We assume DR and DG can be transformed into a common
space Z by some function Ψ : D∗ 7→ Z, such that Ft =
f (Ψ(D∗))+ ε ∼N (0,σ2), where ε is the Gaussian noise
in Ψ(D∗). Given Ψ, ZR and ZG do not need to collect
data during the same time step. Since ZR’s time schedule
is known and set, only ZG’s schedule needs to be optimized,
by minimizing the cost of deployment and operation while
preserving a predictive accuracy, ∆ of Ft .

Thus, our goals are:
1) To determine the time tD in the future of when to

deploy ZG while preserving the desired predictive
accuracy, and

2) Given tD, to identify the critical locations Xc that ZG
must sample.

IV. SPATIO-TEMPORAL FIELD MODELLING

As our proposed approach is based on GPs and their
properties, here we include a brief description of the GPs
together with an analysis on the accuracy of the estimates.



Let D = [X ,Y ] be a dataset, where X is a 3D vector with
(t, p,q)∈ X , with t ∈R being time and (p,q)∈ E a location
in E . Let Y be a vector of their corresponding measurements,
y = Ψ(D∗)+ ε collected by any given sensor, such that for
every (t, p,q)∈X , there is a corresponding y∈Y . Let X∗ be a
3D vector of test inputs, whose corresponding measurements,
Y∗ are to be estimated. Then, a GP model f∗ for estimating
X∗ is drawn from a normal distribution defined as

f∗|X ,Y,X∗ ∼N (µ(X ,X∗),Σ), (1)

where the mean vector µ(X ,X∗) covariance matrix Σ are

µ(X ,X∗) = K(X∗,X)[K(X ,X)+σ
2
n I]−1Y, (2)

Σ = K(X∗,X∗)−K(X∗,X)[K(X ,X)+σ2
n I]−1]K(X ,X∗) (3)

The elements of the covariance matrix, K(·, ·) are given
by a kernel function, which describes the spatio-temporal
correlation between a pair of inputs. We apply a commonly
used kernel because of its general applicability to different
domains, the squared exponential (SE), [37], defined as

ky(xp,xq) = σ
2
f exp(−

(xp− xq)
2

2l2 )+σ
2
n σpq, (4)

where l is the length scale representing the function smooth-
ness; σ2

f is signal variance determining the amplitude; σ2
n is

the noise variance accounting for the estimate noise; and δpq
is the Kronecker delta (δpq = 1 if p = q, else δpq = 0).

Using the SE kernel, a GP model is parameterized by
θ = (σ2

f , l,σ
2
n ), which are determined from the data using

Maximum Likelihood Estimation (MLE) [37], by maximiz-
ing

log p(Y |X ,θ) =−1
2

Y T
Σ
−1
y Y − 1

2
log |Σy|−

n
2

log2π (5)

Suppose we are given a GPR estimator, θ̂ that estimates
some random variable θ ; the Mean Squared Error (MSE)
[38] in the estimates is given by

MSE(θ̂) = E[(θ̂ −θ)2] (6)

We can express E[(θ̂−θ)2] in terms of the GPR variance to
obtain [38]

MSE(θ̂) = Var(θ̂)+Bias2(θ̂) (7)

where Var(θ̂) is the posterior variance of GPR and Bias(θ̂)
is the model bias. Accordingly, for an unbiased estimator as
a GP [39]

Var(θ̂)≤MSE(θ̂) = ∆ (8)

From Equation (8), we can define the accuracy of GPR
estimates as a function of its posterior variance. Based on
this formulation, we define a desired accuracy value, ∆, to
determine the efficiency of the adaptive sampling mission.

Note that the running time and memory complexity of GP
modeling is O(N3) and O(N2), respectively [40] – where N
is the size of the training set D. This makes the GP model
intractable for real-time exploration of large areas (e.g., N >
100 on an embedded system). We’ll show in the next section
how we address this challenge.

V. SENSOR SCHEDULING ALGORITHM

Suppose we have a time series of snapshots of a spatio-
temporal field. Then, its future flow can be predicted using
various models [37], [41], one of which is a Gaussian Process
Regression (GPR) model described in IV. In this section, we
describe how a GPR can be used to optimize the schedule
of sensors utilized in a persistent monitoring task.

Initially, we need to strategically identify hot-spot lo-
cations, X ∈ E , whose measurements at any given time t
are sufficient for reconstructing the snapshot Ft ⊂ F of the
field. The goal is to minimize the number of data points
required for modeling F and the cost of operating sensor
ZG, while also preserving the predictive accuracy of the
estimates. One strategy for determining hot spots is to divide
the environment into cells of a particular resolution and
use the measurements from the center of each cell in the
modeling. Note, the resolution can be empirically optimized
for a given predictive accuracy ∆, using a GPR model.

Assuming the historical measurements of F , specifically
Dt =

⋃t
i=−∞ Di taken up to t from X , can be used to

accurately reconstruct Ft , the following properties are upheld:
1) Spatial variability: Dt captures the spatial variations

(non-stationarity) that occurs in Ft ,∀t = 1, . . . ,T .
2) Spatio-temporal variability: Dt captures the spatio-

temporal variations in F that occurs within the time
window [−∞, t].

With the spatial variability property, the task of moni-
toring spatial variations in Ft can be reduced to monitoring
hot-spot locations X at t. This minimizes the computational
cost of modeling Ft and the operational cost of sampling with
sensor ZG. On the other hand, the spatio-temporal variability
property allows us to predict temporal variations that may
occur at every location x ∈ X and, hence, identify those that
may require sampling in the near future for proper planning.
We leverage these properties in designing the proposed
approach for scheduling the deployment of the on-demand
sensor ZG.

A. Predicting Future States

Given X , Dt (i.e., all data collected up to t,) and a desired
predictive accuracy ∆, our goal is to predict snapshots FTc =
{Fi,∀i= t, t+1, . . . , t+Tc} for timestamped hotspot locations
XTc , where Tc is the remaining number of time steps from t to
the end of the current cycle for sensor ZR. We focus on this
particular time window because no new data is collected from
any sensor in this period, making it the right time to decide
on whether or not to deploy ZG. To obtain FTc , we can train a
GPR model with Dt and use it for prediction. However due to
the high computational demands of GPR, this approach may
become intractable as the size of Dt increases over time. To
address this, we propose a mixture of GP experts approach
outlined in Algorithm 1.

In this approach, Dt is partitioned into clusters and each
cluster is used to train a GPR model that makes local
predictions of XTc , denoted as Ŷc (lines 2-6). We assume that
the resulting clusters categorize Dt into i.i.d. subsets that can



Algorithm 1 Predict Future States, FTc

Input: t,D,XTc ,T ; Time step, Prior Data up to t, Timestamped hot spot
locations, Time horizon
Output: µYc ,ΣTc ; Estimates for Xt

1: C,CD,← clusterData(D); Cluster ids, Clustered data
2: Ŷ ,←{}; Cluster model estimates for Xt
3: for all c ∈C do
4: Ŷc← Predict(CD[c],XTc )
5: Ŷ [c]← Ŷc
6: end for
7: µTc ,ΣTc ,← /0, /0
8: for all xi ∈ XTc do
9: µxi ,σ

2
xi
← argminŶ

xi
c
{σ2

xi
∈ Ŷ xi

c ,∀c ∈C}
10: Add µxi to µTc
11: Add σ2

xi
to ΣTc

12: end for
13: return µTc ,ΣTc

be modeled by a GPR, and the trained GPR can estimate new
inputs that are within its cluster. Hence, training a local GPR
model for each cluster allows for finding optimal parameters
that representative of each cluster. Moreover, we use the
DBSCAN [42], [43] technique for clustering because of its
superior performance on dynamic data [44] and its ability to
optimize the number of clusters. Hence, we predict FTc by
finding the most optimal estimate Ŷ xi

c ∈ Yc for each instance
xi ∈ XTc among all of its local estimates, such that

FTc =
⋃

∀xi∈XTc

Ŷ xi
c . (9)

We assume that the most optimal estimate is the one with the
smallest predictive accuracy (line 9). Note that FTc has two
components: the posterior mean, µTc , and variance, ΣTc . We
obtain the snapshot Ft from µTc and exploit ΣTc to determine
the next critical time tD as well as the corresponding critical
locations Xc for scheduling ZG, as described in the next
section.

B. Scheduling Next Deployment

At any given time t we can compute the critical time tD
and critical locations Xc by analyzing ΣTc , obtained from the
model as described in Section V-A. Let snapshot Σ

tD
c ⊆ ΣTc

be the predictive accuracy for input XtD ⊆ XTc (i.e., X at
time step tD). We consider Σ

tD
c to be critical if its maximum

value exceeds ∆ and if tD is the closest time step to t. We
refer critical time as tD, where tD > t, and critical locations
as Xc ⊆ XtD , corresponding to values that exceed ∆. (See
Algorithm 2, line 15).

We demonstrate the application of the proposed algorithm
with a toy example shown in Fig. 2. In this example, X
contains 3 unique locations, P0, P1 and P2. The spatio-
temporal field F exhibits unique variations at each location,
such that the variation at P0, P1 and P2 are defined by
linear functions f (t) = 6+ ε , f (t) = 0.2t +5+ ε and f (t) =
0.3t + 8+ ε , respectively, where e ∼N (0,σ2) is Gaussian
noise. In this example, we define F = { f (t)},∀t = 1, . . . ,T =
50 (days). The goal is to predict the appropriate time for
taking new samples, such that a desired predictive accuracy
is maintained. Using data from Day 0-3 (D3) and from

7 days 10 days

Fig. 2. GPR estimates for locations P0, P1, and P2, where their
measurements are defined by functions f (t) = 6+ ε , f (t) = 0.2t + 5+ ε ,
and f (t) = 0.3t +8+ε , respectively. Left: GPR Estimates after training the
model with historical data up to day 3. The model accurately estimates
the field up to 7 days in the future without requiring more samples. Right:
GPR estimates after training the model with historical data up to day 10.
The model accurately estimates the field up to 10 days in the future without
requiring more samples.

Day 0-10 (D10), collected by both sensors ZR and ZG, we
train GPR models and then predict the progression of F in
subsequent time-steps. With D3, we observe that the model
can accurately predict Ft for 7 consecutive days in the future
without new samples of F . Similarly, we observe that D10
can accurately predict up to 10 consecutive days without
new data. Consequently in both scenarios, sampling is only
necessary at Day 10 and Day 20 respectively. Hence, we can
deploy ZG at these time steps (i.e., critical time) to locations
Xc ⊆ XtD that need sampling (i.e., critical locations).

Note that if ZR is scheduled within the 7-day or 10-day
period, then deployment of ZG is unnecessary, as an update of
the model with new data from ZR may extend the accurate
prediction further out into the future. Hence, we optimize
the deployment schedule of ZG (tD and XtD) by iteratively
optimizing the predictive accuracy bound of the GPR model
whenever new data is introduced. On deployment, ZG sam-
ples critical locations using an off-the-shelf path planner,
such as boustrophedon [8] or TSP [45].

VI. EXPERIMENTS

We implemented the proposed approach in simulation and
evaluated it using two unique spatio-temporal field datasets,
SF1 and SF2. Each dataset is a 100-frame video, where
SF1 simulates a realistic spread of a barium cloud and
SF2 simulates variation of water temperature over time. We
obtained SF1 from [35] and generated SF2 synthetically
with GSTOOLS [46]. We assume each video frame shows
an accurate distribution of the field for a day, resulting in
100 days of ground truth data. Some snapshots from SF1
and SF2 are shown in Fig. 3. Both SF1 and SF2 are in a
400 m x 150 m environment with 200 hot-spot locations X ,
distributed at a resolution of 20 m.

Furthermore, we assume the remote sensor ZR can accu-
rately measure both SF1 and SF2 at fixed cycles TR (in days).
Whereas, ZG can take in-situ measurements for both fields
whenever it is deployed. We test different remote sensing
cycles, 2, 5 and 10. For simplicity, we define Ψ(z) = z+ ε ,
where z is a ground truth measurement and ε is Gaussian
noise with 0 mean and variance, equivalent to 5% of the
max value of the corresponding spatio-temporal field.



Algorithm 2 Sensor scheduling Algorithm
Input: X ,T,TR; Hotspot locations, Time horizon, Sampling cycle of sensor
ZR
Output: F = {Ft ,∀t = 1, ...,T}; Daily estimates of F across T
1: S,D, t, tD ← {},{},0,−1; locations scheduled for sampling, collected

sensor data, time step, predicted time step for deployment of sensor ZG
2: F ← /0; Estimated Snapshots of F
3: while t < T do
4: S[t +1]← /0
5: if t%TR = 0 or t = tD then
6: if t%TR = 0 then
7: DR← fetch data with sensor ZR
8: D[t]←Ψ(DR)
9: else

10: DG← Deploy sensor ZG to sample at locations S[tD]
11: D[t]←Ψ(DG)
12: end if
13: XTc ← generate timestamped X from t to t +Tc
14: µTc ,ΣTc ← predictFutureStates(t,Dt ,XTc ,T )
15: tD,Xc← scheduleNextDeployment(t,ΣTc ,X ,TR)
16: S[tD]← Xc
17: Ft ← Extract estimates of Xt from µTc
18: else
19: Ft ← Compute Estimate for Xt from Dt
20: end if
21: Add Ft to F
22: t← t +1
23: end while
24: return F

Fig. 3. Snapshots of the spatio-temporal fields, SF1 (top) and SF2 (bottom).
SF1 represents a barium cloud flow field, where a mass flows from the left
to right, while dispersing over time. SF2 represents the variation of water
temperature over time.

Our goal is to obtain accurate daily estimates of SF1
and SF2 at the hot-spot locations, while minimizing the
number of deployments and visited locations, Xc ⊆ X of ZG,
throughout the 100-day period.

To achieve this, we consider four persistent monitoring
strategies: 1) and 2) The proposed strategy is where ZG is de-
ployed to collect samples when necessary, and estimates are
made based on both the collected data and the latest remote
sensing data. This approach is further evaluated based on the
adaptability of sample locations whenever ZG is deployed.
We denote the approach where all locations are sampled
at every deployment as ADAPT S and the approach where
only critical hot-spot locations are sampled as ADAPT D. 3)
The DAILY strategy is where ZG is deployed daily to collect
samples, and estimates are made based on both the collected
data and the latest remote sensing data. 4) The REMOTE
strategy is where ZG is never deployed, but estimates are
made based on the previously collected remote sensing data.
For all strategies, estimates are made from data using a GPR
model described in Section IV.

Experiments were performed as a cron job on a Ubuntu
machine with an Intel i7 CPU and 32GB RAM. For every
deployment scheduled by the cron job, we spawned a team
of four differential drive robots in Stage [47] simulator
to traverse all hotspot locations scheduled for sampling.
On deployment, we used the m Traveling Sales person
(mTSP) [48] method, where m = 4, to compute subtours
for each robot. However, other path planning methods can
be implemented. In addition, we limited prior data used in
training the model to a window of 10 days for computational
tractability purposes.

For evaluation, we report the root mean square error
(RMSE) of the daily estimates made by each strategy, the
percentage of days ZG is deployed across the entire monitor-
ing duration, and the percentage of locations visited during
each deployment. These metrics indicate the efficiency of
persistent monitoring and the cost of operating ZG.

In summary, we have two spatio-temporal fields, SF1 and
SF2, and we would like to monitor them using sensor ZR and
ZG. ZR samples the fields every 2, 5, and 10 days, whereas
ZR is deployed using three different strategies: ADAPT S,
ADAPT D, and DAILY. In the next section, we evaluate the
performance of the monitoring task, evaluating our methods
against the alternative strategies.

VII. RESULTS AND DISCUSSION

We evaluate the effect of monitoring SF1 and SF2 in
the hot-spot locations using ADAPT S, ADAPT D, REMOTE,
and DAILY strategies.

Fig. 4 shows the aggregated daily error in estimates of
SF1 and SF2 with each strategy. We observe that DAILY
outperforms ADAPT * and REMOTE throughout the entire
monitoring period, for both SF1 and SF2. This is due to
DAILY’s ability to collect daily data, which improves accu-
racy in all its estimates. However, ADAPT S and ADAPT D
follow closely in performance since, unlike, DAILY, they
collect data only when it is deemed necessary. The REMOTE



Fig. 4. Aggregated error (RMSE) in daily estimates of Ft ⊂ F , with ZR
acquiring data at 2 day (left), 5 day (center) and 10 day (right) intervals.
Overall, DAILY (magenta) approach has the smallest error, closely followed
by ADAPT S (blue) and ADAPT D (green), for both SF1 (top row) and SF2
(bottom row). Remote (yellow) has the highest error across all scenarios.

Fig. 5. Percentage of ZG deployments based on each method across the time
horizon, T , for cycles 2 days (left), 5 days (center), and 10 days (right). For
both SF1 (top row) and SF2 (bottom row), DAILY (magenta) has the highest
percentage of visits and REMOTE (yellow) has 0 across all cycles. ADAPT S
(blue) reports the second highest percentage of deployments followed by
ADAPT D (green).

strategy has the highest daily error due to its reliance on only
remote sensing data.

Fig. 5 reports the number of days on which ZG is deployed
as a percentage of days within the monitoring period. We
note that DAILY has the highest percentage of visits, for both
SF1 and SF2, followed by ADAPT S and ADAPT D. This
high percentage of visits makes it impractical for implement-
ing the DAILY strategy, especially in persistent environment
monitoring, where technicians and domain experts need to be
present on every monitoring mission. On the other hand, the
relatively low visits when applying either ADAPT method
is due to the implementation of the optimized deployment
schedules. Moreover, when implementing either ADAPT
strategy, ZG visits less number of locations than under the
DAILY strategy across all scenarios, as shown in Fig. 6. We
also observe that ZG visits less locations under ADAPT D
than under ADAPT S. This indicates ADAPT D’s ability to
not only identify the right time to deploy ZG but also
select critical locations for sampling. This adaptive behavior
is beneficial in minimizing the operational costs of ZG.
Overall, these advantages can be useful in optimizing sensor
deployment schedules, thereby minimizing operational costs

Fig. 6. Percentage of locations sampled by ZG based on each method
across the time horizon, T , for cycles 2 days (left), 5 days (center), and 10
days (right). Overall, ZG samples the largest percentage of locations with
the DAILY (magenta) strategy, followed by ADAPT S (blue) then ADAPT D
(green) across all cycles, for both SF1 (top row) and SF2 (bottom row). Note,
the REMOTE (yellow) method will never deploy ZG.

and logistical demands associated with running a persistent
monitoring mission with portable sensors.

VIII. CONCLUSIONS

We presented a decision-making framework that plans
for when and where on-demand robot(s) should sample
in an environment, based on previously collected data of
past robotic deployments and remote sensing data. Analysis
of temporal variance changes in a mixture of GP experts
model estimates allows the decision-making framework to
preserve a predictive accuracy over time, while minimizing
the number of deployments. Our experiments with synthetic
and real-world spatio-temporal phenomena demonstrated the
effectiveness of our proposed approach compared to baseline
strategies.

We plan to extend this work by determining how many
and which types of robots, possibly equipped with different
sensor quality tools, would be best to deploy. We expect
to conduct a large scale experimental campaign over the
summer to monitor cyanobacterial blooms in lakes.

Ultimately, our novel decision-making framework has the
potential to significantly reduce the logistics and cost of
data collection in the field, a vital requirement for operating
various lake and ocean monitoring missions.
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