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Abstract— We propose a novel dynamic partitioning ap-
proach for robot coordination, which minimizes energy usage
for robots on a multi-model hot-spot sampling mission in a
dynamic environment. Real world environments have various
disturbances, such as wind and water currents that impact
a robot’s energy usage. Their magnitude and direction impede
the robot’s navigation, which necessitates extra power intensive
control. Thus, it is essential for robots to account for the
impact of environmental dynamics in order to guarantee a
successful multi-model hot-spot sampling mission. Existing
partitioning methods such as Voronoi partitioning and Delau-
nay triangulation do not account for energy usage, rendering
them inappropriate for balancing energy usage in a multi-
robot coordination scenario. Thus, we propose an energy-
conscious multi-model hot-spot sampling (EMMS) approach
that is optimized for energy consumption at every step of the
hot-spot sampling process by coordinating robots to ensure
each robot minimizes energy usage across the robot team, and
by computing energy efficient paths during sampling. EMMS
partitions the environment according to the energy consumption
of each robot such that a robot is assigned to a sub-region
in which it consumes the least energy during sampling. It
also ensures that robots navigate along paths that minimize
energy usage by assessing the required energy for a given path
using a realistic energy model that accounts for both the robot
properties and environmental dynamics. We evaluate EMMS
in a virtual environment that simulates realistic robot and
environment dynamics. Our extensive experiments report over
30% higher energy savings by EMMS more than for traditional
adaptive and non-adaptive methods.

I. INTRODUCTION

We propose a novel energy-conscious multi-robot coor-
dination approach that minimizes energy usage of a robot
team on a multi-model hot-spot sampling task in dynamic
environments. With an energy model that accounts for both
robot properties and environmental dynamics, this approach
optimizes the informative path of a robot for both multi-
model accuracy and energy conservation, thereby increasing
the operating time of the robots for missions that require
longer operating times such as multi-model hot-spot sam-
pling. Multi-model hot-spot sampling refers to the process
of sampling and modeling multiple properties of the envi-
ronment simultaneously using robots in order to get more
insights about a latent property of the environment. For
instance, studying algal bloom in water quality monitor-
ing [1] involves simultaneously sampling multiple chemical
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Fig. 1. Example Scenario: Given a team of robots, equipped with sensors
that measure unknown spatial fields A and B in the target environment,
required to identify and sample hot-spots of both fields, how can the robot
team efficiently identify and sample all the hot-spots while conserving
energy?

properties of a lake, such as chlorophyll, dissolved oxygen,
turbidity, among us. Similarly, monitoring crop health in
precision agriculture [2] involves measuring various chemical
properties in the soil, such as nitrogen, phosphorus, organic
matter, among others.

Whereas these properties are co-located, they are typically
uncorrelated, implying that sampling hot-spots for one does
not guarantee accurate sampling of others. Due to this
independence, the number of hot-spot locations can increase
dramatically as more properties are sampled since they may
have highly diverse hot-spot locations as illustrated in Fig. 1.
Therefore, it is essential to efficiently manage energy usage
in order to guarantee success of such a mission.

Several methods have been proposed to guide robots on
how to identify and sample hot-spots of a spatial field
[3]–[6]. Generally, these methods build a model for a single
spatial field using Gaussian Process Regression (GPR) [7]
and define a data acquisition function that computes the
significance of each location based on submodular infor-
mation metrics [8] such as variance, mutual information
[6], Fisher information [9], entropy [10], among others. The
performance of a data acquisition function is evaluated based
on how well it balances the exploration-exploitation trade off.
One of the popular data acquisition functions is the upper
confidence bound (UCB) [11], which balances this trade-off
by computing a weighted sum of the model estimate and
its corresponding uncertainty for a given location. This and
other data acquisition functions prioritize sampling locations
that improve model accuracy but do not explicitly account for
the energy demands of visiting a target location. It is typically
assumed that by minimizing makespan and traveled distance,
energy consumption is implicitly minimized. While this is
true in ideal environments, this may underestimate the energy
losses in environments with various external disturbances,
such as wind and water currents as in aquatic environments.



For instance, the literature [12], [13] shows that differential
drive robots consume more energy during turns and when
they travel full throttle for long periods of time or against
the direction of wind and water currents. Hence, an efficient
strategy for sampling a given location has to consider these
costs in order to avoid premature termination of the hot-spot
sampling mission.

Moreover, these approaches are designed for sampling
hot-spots of a single phenomenon. Such approaches may
also apply in multi-model hot-spot sampling if there is a
high correlation among the target phenomena. However, such
high correlations are not common in practice [14]–[16],
which may lead to model inaccuracies and unexpectedly
high energy usage in practical scenarios where multiple,
uncorrelated phenomena need to be sampled accurately and
simultaneously.

Hence, we propose an energy-conscious multi-model
adaptive sampling (EMMS) technique that accounts for the
uniqueness of each phenomenon and the energy constraints
of the robot to enable accurate and reliable simultaneous
sampling. EMMS incorporates both the estimated informa-
tion for each model at a given location and energy cost
for visiting the same location into data acquisition planning,
ensuring that the technique not only balances the exploration-
exploitation trade-off but also exploration-energy trade-off.
In addition, EMMS implements an energy-conscious multi-
robot coordination strategy that allows robots to explore
the environment cost effectively by assigning each robot to
sample sub-regions in which it minimizes energy usage. In
summary, the main contribution of this work is two-fold:

• An energy-conscious multi-model hot-spot sampling
approach for multi-model hot-spot sampling that mini-
mizes energy usage to enable long monitoring cycles in
dynamic environments.

• A novel energy-efficient environment partitioning strat-
egy that enables a robot team to collectively maximize
energy conservation by assigning each robot to sub-
regions in which it minimizes energy usage.

This paper is structured as follows. Section II discusses
related work focusing on environment modeling, path plan-
ning, and data acquisition methods. Section III formally
states the sampling problem of focus. Section IV describes
the environmental modeling, data acquisition functions, and
energy models relevant to the proposed approach presented in
Section V. Experiment setup, results and concluding remarks
are presented in Section VI, VII, and VIII respectively.

II. RELATED WORK

The problem of identifying and sampling hot-spots of
a spatial field has been widely studied in the literature
[3]. Most of the proposed works address energy-related
challenges in the environment modeling [17], [18] and in-
formation gathering steps of this task. In this section, we
highlight some of the latest work proposed in both categories.

Environment modeling has been studied to address the
scalability of GPR [7] models, which are commonly used in
reconstructing spatial fields from samples. The most common

approaches in this category are the Mixture of Gaussian
Process Experts (MGPs) [19]–[21] and environment parti-
tioning [22]–[24]. The MGP model was introduced by Tresp
et al. [20] as a model for active learning – another name
for adaptive sampling – [3] problems. These methods model
large spatial fields by aggregating local approximations ob-
tained from a collection of models. For a comprehensive
review of MGPs, please see the surveys from Liu et al. [19]
and Yuksel et al. [25].

The works in information gathering can be categorized
into the data acquisition work that proposes strategies for
balancing the exploration-exploitation ratio and motion plan-
ning, which aims at finding the most energy efficient path for
sampling. For data acquisition, [4], [26], [27] propose uncer-
tainty sampling in order to minimize the mean squared error
between model estimates and the target field. With this ap-
proach, regions of relatively high uncertainty are prioritized
over those of low uncertainty but the magnitudes of estimates
are not considered, making it inappropriate for identifying
hot-spots. [11] propose the upper confidence bound, which
balances this trade-off by quantifying information at any
given location as a function of both the model uncertainty
and the estimated value. With a good exploration-exploitation
ratio parameter, this approach is efficient in identifying
hot-spots. Other data acquisition functions include entropy,
mutual information [28] and other sub-modular information-
theoretic models. For a detailed review of these functions,
the reader is referred to [3]. In multi-model sampling, these
approaches assume that all the target fields share similar
hotpot locations. This may not be the case in practice,
especially when the spatial fields are not correlated. Our
work accounts for this practical scenario when identifying
hot-spots for each field.

On the other hand, several information gathering ap-
proaches have been proposed in the literature with the
objective of obtaining a time optimal [29]–[31] or energy
optimal [32] sampling plan in dynamic environments. One
of the common approaches is identifying level set equations
[33] that define an optimal path from source to target
against existing environmental dynamics [29]. Other tradi-
tional methods rely on search algorithms such as Depth First
Search (DFS) [34], Monte Carlo Tree Search (MCTS) [35],
[36] and Dynamic Programming [37] to obtain the most
energy efficient path to the target location. For instance,
[38] applies MCTS to search for a high utility and energy
efficient path for sampling ocean fronts with a custom multi-
objective graph weighting function that is used to compute
the weights of transects between a pair of endpoints on the
graph. For a comprehensive review of these methods, the
reader is referred to the motion planning surveys [39], [40].
Whereas some of these methods are energy efficient, they
are mostly designed for identifying informative paths that
maximize information gain rather than optimizing for energy
conservation. They make general assumptions on the cost of
navigating through environmental disturbances, but do not
explicitly account for the vehicle’s energy consumption. In
this work, we apply the graph search approach, but compute



the weight of sampling along a given transect using a realistic
energy model that accounts for both the energy consumed by
the vehicle mechanics amidst environmental disturbances.

III. PROBLEM FORMULATION

We assume a 2D environment, E , with M unknown
spatial fields, Z = Z1, . . . ,ZM such that the measurement
for spatial field, Zi at x ∈ E is Zi(x) = fi(x) + εi, where
εi ∼ N (0,σ2

i ),∀i = 1, ...,M; a team of K differential drive
robots, R = {r1, . . . ,rK} that can communicate with each
other through long-range WiFi or radio devices, and are
equipped with M sensors, S = {s1, ...,sM}, such that sensor,
si, measures spatial field Zi. In addition, E has external
disturbances, like current or wind, that affect the robots
energy consumption. The robots’ task is to adaptively explore
the environment in order to identify and sample hot-spots
in Z within a predefined energy bound Λ. As each robot
traverses the environment, it keeps track of the remaining
energy, Λ+ to ensure that the energy limit is not exceeded.

When the robot team is deployed, each robot collects
data, D = [X ,Y1, ...,YM], where X ⊂ E are locations and
Yi, ...,YM are the M field measurements collected at X such
that sensor data for the ith field, Di = [X ,Yi]. Assuming Di
is i.i.d, we can estimate the posterior distribution of the ith
field, f i,∀i = 1, ...,M with a Gaussian Process Regression
model, introduced in Section IV to obtain model collection,
F = [ f 1, ..., f M]. To enhance F , the goal for the robots is to
sample unexplored locations and incorporate collected mea-
surements into the the model estimates by first, identifying
hot-spots in all the model estimates and then sampling them
in the most energy efficient order.

IV. ENVIRONMENT, DATA ACQUISITION, AND ENERGY
MODELS

A. Environment Modeling

Let X be a 2D vector of locations and y a vector of their
corresponding measurements collected by the robot. X∗ is
a vector of test locations, whose measurements are to be
estimated. Then, a GP model f for estimating X∗ is drawn
from a normal distribution defined as

f |X ,y,X∗ ∼ N (µ,σ), (1)

where the mean vector µ and covariance matrix σ are

µ = K(X∗,X)[K(X ,X)+σ
2
n I]−1y, (2)

and

σ = K(X∗,X∗)−K(X∗,X)[K(X ,X)+σ2
n I]−1K(X ,X∗) (3)

respectively. The elements of the covariance matrix, K(·, ·),
are given by a kernel function, which describes the spatial
correlation between a pair of locations. We use a commonly
used kernel because of its general applicability to different
domains, the squared exponential (SE) [7], defined as

ky(xp,xq) = σ
2
f exp(−

(xp − xq)
2

2l2 )+σ
2
n σpq, (4)

where l is the length scale representing the function smooth-
ness; σ2

f is signal variance determining the amplitude; σ2
n is

the noise variance accounting for the estimate noise; and δpq
is the Kronecker delta (δpq = 1 if p = q, else δpq = 0).

Using the SE kernel, a GP model is parameterized by
θ = (σ2

f , l,σ
2
n ), which are determined from the data using

Maximum Likelihood Estimation (MLE) [7], by maximizing

log p(y|X ,θ) =−1
2

yT
Σ
−1
y y− 1

2
log |Σy|−

n
2

log2π (5)

Given measurements of multiple spatial fields, we can si-
multaneously estimate them with the Multi-Task Gaussian
Regression model [18], which uses GPR with a kernel that
models correlations among the spatial fields, and outputs
estimates (i.e, posterior mean and posterior variance) for each
field. If the spatial fields are not correlated, we can model
each spatial field separately using the GPR model defined in
Equation (1). In this work, we model each field separately,
since we assume that the spatial fields are not correlated.

B. Data Acquisition Function

GPR estimates can be used by the robot to determine
the utility of sampling any given location, x. This utility
is defined by the data acquisition function. One of the
most commonly used data acquisition functions is the upper
confidence bound (ucb) [11] defined as,

ucb(x) = µ(X ,y,x)+ωΣ(X ,y,x), (6)

where ω is the exploration-exploitation tuning parameter,
µ(X ,y,x) and Σ(X ,y,x) are the posterior mean and variance
at location x obtained from the GPR model. If ω is large
(small), more (less) importance is given to locations with
large posterior variances. Also, with a small ω , hot-spots
(i.e., locations with maximum values) will be prioritized.

C. Energy Consumption

The work in [41] defines energy consumed by an au-
tonomous surface vehicle (ASV) operating in an aquatic en-
vironment as the sum of its power dissipation PASV through-
out the mission:

E = ∑PASV∆t (7)

where ∆t is the duration for which PASV is dissipated. PASV
is the sum of two power components, defined as,

PASV = PT +PS, (8)

where PT and PS is the power dissipated by the motors and
electrical devices respectively. Note that PT varies depending
on the environmental disturbances, such as wind speed, Vw,
its direction βw, and water currents, Vc. For simplicity, we
assume PS is negligible. Consequently,

E ≈ ∑PT ∆t (9)



Given Vc, Vw, velocity of ASV, VASV , and the ASV speci-
fications, PT at any given time can be computed by:

PT =
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(10)

with:

Vr =VASV −Vc =

ur
vr
rr

=

u−Vcxcosφ −Vcysinφ

v−Vcxsinφ −Vcycosφ

r

.

Each term is defined as follows:
• m11 = m+0.05, where m is the weight of the ASV
• m22 = m + 0.5ρπD2L, where ρ ≈ 1025Kgm−3 is the

water density, D is the ASV submerged depth and L
is length of the ASV.

• m33 = m(L2+W 2)+0.5(0.1md2+ρπD2L3)
12 , where W is the

width of the ASV and d is the distance between its
motors.

• d11 = FTh
umax

, where FTh = FTh1 + FTh2 is the sum of
left (FTh1) and right (FTh2) thruster forces, umax is the
maximum surge velocity of the ASV.

• d22 =
−m11ur

v
• d33 =

FN d
2rmax

, FN = FT h1 −FT h2 is the difference between
left and right thruster forces, and rmax is the maximum
rotation speed.

• [cx,cy] is the center of gravity that depends on the shape
of the ASV.

• AFw and ALw are the frontal and lateral projected areas.
• φ and βw are the ASV heading and wind direction.
• φ −βw is the wind’s angle of attack relative to the ASV.
• Vc = [Vcx,Vcy], where Vcx, Vcy is the water current speed

in x and y directions respectively.
• ρa is the air density, where ρa ≈ 1.184Kgm−3 at warm

temperatures.
In this work, we use the ASV (catabot 2.0) de-

signed in our lab [42] whose specifications are given
as m = 90Kg,L = 2.5m,W = 1.57m,D = 0.865m, [cx,cy] =
[1.47m,1.42m],umax = 2m/s,rmax = 4rad,d = 1.5m,AFw =
1.42m2,ALw = 1.4m2. Given the wind speed and direction,
[Vw,βw], and water current speed, Vc = [Vcx,Vcx] and ASV
velocity, VASV = [u,v,r] at any given time, we can compute
PT with Equation (10) and sum it up to estimate the energy
consumed by an ASV during the mission.

V. ENERGY-CONSCIOUS SIMULTANEOUS FIELD
SAMPLING ALGORITHM

After robot deployment, hot-spot sampling has two itera-
tive steps, environment modeling and data acquisition. In this
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Fig. 2. Illustration of the proposed method. Left: Deployment of robots.
The coordinator robot samples arbitrary locations, X in the workspace and
generates a bipartite graph between the robot poses and X . The weight of
each edge, (xi,x j) on the graph is defined by the estimated energy, E(xi,x j)
consumed by the robot to travel from xi to x j under existing disturbances.
Right: Robot, R1 identifies one hot-spot from each field, h1,h2,h3 within its
assigned sub-region and plans to sample each of them. A directed graph is
generated, where the nodes are the robot pose and hot-spots, and the edge
weights are the estimated energy consumed by the robot when navigating
from one edge endpoint to another. From the graph, a Hamiltonian path is
computed using a Traveling Salesperson Problem (TSP) solver. The robot
samples the hot-spots by following the resulting path.

section, we present the proposed energy-conscious approach
that ensures each step is done in an energy efficient manner
as illustrated in Fig. 2.

A. Energy-conscious Robot Deployment

Initially, robots localize into the target environment, mea-
sure the environmental disturbances and exchange their
global poses. One robot on the team is arbitrarily assigned
to coordinate the deployment. The coordinator robot selects
sample locations as deployment location candidates and
identifies the most optimal location to deploy each robot.
Optimality is determined by the potential amount of energy
consumed by the robot to navigate from its pose to a
target location, which can be computed by the energy model
described in Section IV-C. To determine the most optimal
target location for each robot, the coordinator robot generates
a complete bipartite graph, G = (U,V,κ), where (pi ∈U,v ∈
V ) is an edge that maps robot pose, pi to a target location,
v and its weight, wiv ∈ κ is the estimated energy required
by robot i to navigate to v. From G, optimal assignments
can be computed by finding the minimum energy cost
edge (ui,v),∀i = 1, ...,K. With this approach, we ensure that
each robot consumes minimal energy at deployment. The
coordinator robot then shares deployment locations to each
robot in accordance with this assignment.

B. Environment Modeling and Energy-Conscious Sampling

As a robot navigates the environment, it simultaneously
collects data for all the target spatial fields. This data is
used to estimate the distribution of each field across the
workspace. We use the GPR model defined in Section IV-A
to estimate these distributions from collected data. Since we
assume no correlation between the spatial fields, we model
each field independently to obtain the model collection, F .
The model collection is continuously updated after every data
collection cycle.

From F , a robot identifies hot-spots that need to be sam-
pled using the Upper Confidence Bound (UCB) described in
Section IV-B. Since F is updated after every sampling cycle,
a robot selects one hot-spot with the highest UCB from each
model, f i for sampling in order to balance sampling across



all fields. Hence, we select M hot-spots for sampling in every
cycle and compute an energy efficient path that traverses the
selected hot-spots.

To obtain an energy-efficient path, we create a connected
directed graph H = (S,T,W ), where S is the set of nodes
representing the hot-spot locations, (s, t) ∈ T is an edge
on H and est ∈ W is the weight of (s, t), defined as the
estimated energy consumed when navigating from node s to
t. Given H , the most energy efficient path is the Hamiltonian
tour, which can be obtained using a Traveling Salesperson
Problem (TSP) solver. Once the path is obtained, the robot
proceeds to traverse the tour and collect data, which is then
incorporated into the model. This process repeats until the
energy consumption, Λ+ reaches a critical point.

C. Energy-Conscious Partitioning

For the multi robot case, we further minimize energy
usage by coordinating the robot team such that each robot
only samples and models a sub-region which minimizes
its energy usage. Specifically, we partition the environment
such that each sub-region is sampled with minimal energy
requirements. For any location x ∈ E , robot i is assigned to
x if it has sufficient energy and consumes the least energy
to navigate to x from its current target location compared to
others. Thus, the region assigned to robot i is specified as:

Vi = {x ∈ E : argmin
i

E(xi,x,Vd) = i,

s.t Λ
+
i > 0,∀i = 1, ...,K},

(11)

where E(xi,x,Vd) is the total energy consumed when nav-
igating from its current target location, xi to x amidst
environmental disturbances, Vd , and Λ

+
i is the remaining

energy on robot i. At the beginning of every sampling cycle,
robots exchange collected data and their next target locations
to ensure that each robot on the team is maintaining an up-
to-date model collection and is sampling in appropriate sub-
regions.

VI. EXPERIMENTS

We evaluate the proposed approach (labeled as EMMS)
in a lake environment 500m × 325m that has up to 4
unique spatial fields, SF1, SF2, SF3 and SF4 (Fig. 3).
The spatial fields are synthetically generated to represent
chemical properties of lake water, such as Chlorophyll-A,
PH, Conductivity, Nitrogen. All these chemical properties
are essential in water quality monitoring against algal bloom
growth in lakes. We also specify wind speed, Vw = 4m/s
and its direction, β = 0◦ (direction of wind in North East is
from North West in summer [43]), and water current velocity,
Vc = [0.035m/s,0.035m/s] to simulate realistic disturbances
in the lake during sampling in US North Eastern Lakes, as
average wind speed of a gentle breeze [44] and average water
current speed in the summer [45].

We use EMMS to sample hot-spots of the above spatial
fields using robot teams of 4 different sizes, namely 1,2,3
and 4. Each robot is equipped with sensors that simultane-
ously sample the fields with signal-to-noise ratio of 5% and a

Fig. 3. Test spatial fields top left: SF1, top right: SF2, bottom left: SF3
and bottom right: SF4. Note that all spatial fields have their hot-spots at
unique locations.

battery capacity of 220 Wh when fully charged. We random-
ize experiments by simulating 5 different battery levels at the
beginning of deployment, namely 100%,80%,60%,40% and
20%. The robots are assumed to have uniform battery charge
levels at deployment. The environment, robots, and their
sensors are simulated in Stage [46], a lightweight simulator
for multi robot systems. Each experiment terminates when
either the battery discharges to critical levels or after 1200 s.

Finally, we evaluate EMMS against six(6) other methods to
assess its different components and its performance against
traditional methods. These include 1) MMS, which samples
hot-spots from all fields (as in EMMS) but does not account
for energy usage in planning and coordination. 2) EMS,
which samples all fields based on a single field and accounts
for energy consumption in its coordination (as in EMMS).
3) MS, which samples all fields based on a single field but
does not account for energy consumption (as in MMS), and
4) VMMS, which applies dynamic partitioning [23] using
Voronoi Partitioning and samples hot-spots from all fields
but does not account for energy usage in planning and
coordination. In addition, we evaluate it against 5) vertical
(LMV) and 6) horizontal (LMH) boustrophedon sampling
[47], with an inter-lap spacing that is optimized for a full
coverage while enforcing energy constraints. Note that all
methods that are guided by a single field use SF1 as their
primary target field.

The performance metrics for evaluation include Recon-
struction Error as Root Mean Squared Error (RMSE) for
each spatial field, hot-spot error (i.e., RMSE between ground
truth hot-spots and corresponding measurements in esti-
mates), average energy usage, and average traveled distance
by each robot at the end of the mission.

VII. RESULTS AND DISCUSSION

First, we evaluate energy usage for each method to assess
the effect of applying an energy-conscious adaptive sampling
approach in hot-spot sampling. Results of battery usage
(Fig. 4) show that energy-conscious methods, EMS and
EMMS show a steady drop of battery usage as the robot
team size increases and the usage drops to almost 30% more
than the non energy-conscious methods. On the other hand,
methods that are not energy-conscious, MMS, VMMS, MS,
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Fig. 6. Average traveled distance by a robot for each method according to
robot size. The travel distance for energy-conscious methods steadily drops
as the robot team size increases.

LMV, and LMH are generally not affected by the increase
in robot size, despite the multi-robot coordination and data
sharing they enforce. The high energy-scalability exhibited
by energy-conscious methods allows them to operate longer
(see Fig. 5), which makes them advantageous in long-term
monitoring missions. Moreover, energy-conscious methods
have the lowest average traveled distance compared to their
counterparts as shown in Fig. 6. This demonstrates the
effectiveness of using energy usage for robot coordination,
as it enables robots to exploit nearby hot-spots in a bid
to conserve energy, which consequently minimizes their
traveled distance. The UCB method tends to prioritize far
unexplored regions due to the GPR kernel used, which leads
to long distance travels. However, this is evidently mitigated
as energy usage is incorporated into the data acquisition
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Fig. 7. Heatmap showing mean and standard deviation of hot-spot error
in hot-spot measurements for all spatial fields. Overall, all the adaptive
methods perform more efficiently across all spatial fields compared to the
non-adaptive methods.
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Fig. 8. Heatmap showing mean (left) and standard deviation (right) of
reconstruction error in the estimates of all spatial fields by each method.
Overall, all the adaptive methods perform more efficiently across all spatial
fields compared to the non-adaptive methods.

process.
Secondly, we evaluate the efficiency of EMMS in identi-

fying and sampling hot-spots for all the fields by analyzing
the hot-spot error (Fig. 7). Overall, all adaptive methods
accurately reconstruct all spatial fields with minimal error.
However, non-adaptive methods have relatively higher hot-
spot error in all fields as they miss sampling regions that are
not traversed by the predefined lawn mower tour. Similarly,
adaptive methods accurately reconstruct all fields as exhib-
ited by the low reconstruction error in Fig. 8 since they are
able to successfully sample hot-spots, whereas non-adaptive
methods have higher reconstruction error error due to their
inability to exhaustively sample all the significant locations,
thanks to their rigid sampling profile.

Overall, the results demonstrate the significance of using
adaptive methods in hot-spot sampling and also highlight the
need to account for energy usage at every step of the hot-spot
sampling process.

VIII. CONCLUSION

We proposed an energy-conscious multi-model hot-spot
sampling (EMMS) technique that enables robots to simulta-
neously reconstruct multiple spatial fields in aquatic environ-
ments amidst environmental disturbances, such as wind and
water currents. With EMMS, robots use the upper confidence
bound (UCB) data acquisition model to identify hot-spots for
each target spatial field and an energy model to sample hot-
spots in the most energy efficient manner. To further conserve
energy, the robot team coordinates to ensure that each
robot samples a sub-region that minimizes its energy usage.
Experiments demonstrate EMMS technique’s effectiveness
in sampling hot-spots for all the fields and its efficiency in
conserving energy. Moreover, they highlight the benefits of
accounting for energy usage in hot-spot sampling.

Potential future directions for this work is to explore ways
of integrating the two conflicting objectives, energy conser-
vation and information gathering into one energy-conscious
sub-modular function for data acquisition purposes. Finally,
we also plan to implement EMMS in sampling various



chemical properties of the lake that are observed in our long-
term water quality monitoring project.
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